Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Radiat Oncol ; 16(1): 159, 2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34412654

RESUMO

BACKGROUND: Invasiveness is a major factor contributing to metastasis of tumour cells. Given the broad variety and plasticity of invasion mechanisms, assessing potential metastasis-promoting effects of irradiation for specific mechanisms is important for further understanding of potential adverse effects of radiotherapy. In fibroblast-led invasion mechanisms, fibroblasts produce tracks in the extracellular matrix in which cancer cells with epithelial traits can follow. So far, the influence of irradiation on this type of invasion mechanisms has not been assessed. METHODS: By matrix-embedding coculture spheroids consisting of breast cancer cells (MCF-7, BT474) and normal fibroblasts, we established a model for fibroblast-led invasion. To demonstrate applicability of this model, spheroid growth and invasion behaviour after irradiation with 5 Gy were investigated by microscopy and image analysis. RESULTS: When not embedded, irradiation caused a significant growth delay in the spheroids. When irradiating the spheroids with 5 Gy before embedding, we find comparable maximum migration distance in fibroblast monoculture and in coculture samples as seen in unirradiated samples. Depending on the fibroblast strain, the number of invading cells remained constant or was reduced. CONCLUSION: In this spheroid model and with the cell lines and fibroblast strains used, irradiation does not have a major invasion-promoting effect. 3D analysis of invasiveness allows to uncouple effects on invading cell number and maximum invasion distance when assessing radiation effects.


Assuntos
Neoplasias da Mama/radioterapia , Fibroblastos/fisiologia , Esferoides Celulares/efeitos da radiação , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Feminino , Humanos , Invasividade Neoplásica , Esferoides Celulares/patologia
2.
J Immunol ; 205(3): 789-800, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32561569

RESUMO

Although monosodium urate (MSU) crystals are known to trigger inflammation, published data on soluble uric acid (sUA) in this context are discrepant. We hypothesized that diverse sUA preparation methods account for this discrepancy and that an animal model with clinically relevant levels of asymptomatic hyperuricemia and gouty arthritis can ultimately clarify this issue. To test this, we cultured human monocytes with different sUA preparation solutions and found that solubilizing uric acid (UA) by prewarming created erroneous results because of UA microcrystal contaminants triggering IL-1ß release. Solubilizing UA with NaOH avoided this artifact, and this microcrystal-free preparation suppressed LPS- or MSU crystal-induced monocyte activation, a process depending on the intracellular uptake of sUA via the urate transporter SLC2A9/GLUT9. CD14+ monocytes isolated from hyperuricemic patients were less responsive to inflammatory stimuli compared with monocytes from healthy individuals. Treatment with plasma from hyperuricemic patients impaired the inflammatory function of CD14+ monocytes, an effect fully reversible by removing sUA from hyperuricemic plasma. Moreover, Alb-creERT2;Glut9 lox/lox mice with hyperuricemia (serum UA of 9-11 mg/dl) showed a suppressed inflammatory response to MSU crystals compared with Glut9 lox/lox controls without hyperuricemia. Taken together, we unravel a technical explanation for discrepancies in the published literature on immune effects of sUA and identify hyperuricemia as an intrinsic suppressor of innate immunity, in which sUA modulates the capacity of monocytes to respond to danger signals. Thus, sUA is not only a substrate for the formation of MSU crystals but also an intrinsic inhibitor of MSU crystal-induced tissue inflammation.


Assuntos
Artrite Gotosa/imunologia , Hiperuricemia/imunologia , Monócitos/imunologia , Ácido Úrico/toxicidade , Animais , Artrite Gotosa/induzido quimicamente , Artrite Gotosa/genética , Artrite Gotosa/patologia , Proteínas Facilitadoras de Transporte de Glucose/genética , Proteínas Facilitadoras de Transporte de Glucose/imunologia , Humanos , Hiperuricemia/induzido quimicamente , Hiperuricemia/genética , Hiperuricemia/patologia , Inflamação , Camundongos , Camundongos Transgênicos , Monócitos/patologia , Solubilidade
3.
Front Immunol ; 9: 619, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29651290

RESUMO

Crystallopathies are a heterogeneous group of diseases caused by intrinsic or environmental microparticles or crystals, promoting tissue inflammation and scarring. Certain proteins interfere with crystal formation and growth, e.g., with intrarenal calcium oxalate (CaOx) crystal formation, a common cause of kidney stone disease or nephrocalcinosis-related chronic kidney disease (CKD). We hypothesized that immunoglobulins can modulate CaOx microcrystal formation and crystal growth and that therefore, biological IgG-based drugs designed to specifically target disease modifying proteins would elicit a dual effect on the outcome of CaOx-related crystallopathies. Indeed, both the anti-transforming growth factor (TGF)ß IgG and control IgG1 antibody impaired CaOx crystallization in vitro, and decreased intrarenal CaOx crystal deposition and subsequent CKD in mice on an oxalate-rich diet compared to oxalate-fed control mice. However, the TGFß-specific IgG antibody showed nephroprotective effects beyond those of control IgG1 and substantially reduced interstitial fibrosis as indicated by magnetic resonance imaging, silver and α-smooth muscle actin staining, RT-qPCR, and flow cytometry for pro-fibrotic macrophages. Suppressing interstitial fibrosis slowed the decline of glomerular filtration rate (GFR) compared to treatment with control IgG1 [slope of m = -8.9 vs. m = -14.5 µl/min/100 g body weight (BW)/day, Δ = 38.3%], an increased GFR at the end of the study (120.4 vs. 42.6 µl/min/100 g BW, Δ = 64.6%), and prolonged end stage renal disease (ESRD)-free renal survival by 10 days (Δ = 38.5%). Delayed onset of anti-TGFß IgG from day 7 was no longer effective. Our results suggest that biological drugs can elicit dual therapeutic effects on intrinsic crystallopathies, such as anti-TGFß IgG antibody treatment inhibits CaOx crystallization as well as interstitial fibrosis in nephrocalcinosis-related CKD.


Assuntos
Oxalato de Cálcio/química , Taxa de Filtração Glomerular/efeitos dos fármacos , Imunoglobulina G/uso terapêutico , Rim/metabolismo , Nefrocalcinose/terapia , Insuficiência Renal Crônica/terapia , Animais , Cristalização , Dieta , Modelos Animais de Doenças , Fibrose , Humanos , Rim/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oxalatos/efeitos adversos , Fator de Crescimento Transformador beta/imunologia
4.
PLoS One ; 11(6): e0156599, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27253695

RESUMO

Histone demethylases have recently gained interest as potential targets in cancer treatment and several histone demethylases have been implicated in the DNA damage response. We investigated the effects of siRNA-mediated depletion of histone demethylase Jarid1A (KDM5A, RBP2), which demethylates transcription activating tri- and dimethylated lysine 4 at histone H3 (H3K4me3/me2), on growth characteristics and cellular response to radiation in several cancer cell lines. In unirradiated cells Jarid1A depletion lead to histone hyperacetylation while not affecting cell growth. In irradiated cells, depletion of Jarid1A significantly increased cellular radiosensitivity. Unexpectedly, the hyperacetylation phenotype did not lead to disturbed accumulation of DNA damage response and repair factors 53BP1, BRCA1, or Rad51 at damage sites, nor did it influence resolution of radiation-induced foci or rejoining of reporter constructs. We conclude that the radiation sensitivity observed following depletion of Jarid1A is not caused by a deficiency in repair of DNA double-strand breaks.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Histonas/metabolismo , Tolerância a Radiação , Proteína 2 de Ligação ao Retinoblastoma/metabolismo , Acetilação , Proliferação de Células/efeitos da radiação , Cromatina/metabolismo , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Reparo do DNA/efeitos da radiação , Regulação para Baixo/efeitos da radiação , Técnicas de Silenciamento de Genes , Genes Reporter , Células HeLa , Humanos , Lisina/metabolismo , Células MCF-7 , Plasmídeos/metabolismo , Tolerância a Radiação/efeitos da radiação , Radiação Ionizante
5.
Hepatol Res ; 38(7): 717-26, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18328068

RESUMO

AIM: Ursodeoxycholic acid exerts anticholestatic effects in various cholestatic disorders and experimental models of cholestasis. Its taurine conjugate (TUDCA) stimulates bile salt secretion in isolated perfused rat livers (IPRL) under physiological, non-cholestatic conditions, in part by mitogen-activated protein kinase (MAPK)-dependent mechanisms. The role of MAPK in the anticholestatic effect of TUDCA, however, is unclear. Therefore, we studied the role of MAPK in the anticholestatic effect of TUDCA in IPRL and isolated rat hepatocytes (IRH) in taurolithocholic acid (TLCA)-induced cholestasis. METHODS: Bile flow, biliary levels of 2,4-dinitrophenyl-S-glutathione (GS-DNP) as a marker of hepatobiliary organic anion secretion and activity of lactate dehydrogenase (LDH) in hepatovenous effluate as a marker of hepatocellular damage in IPRL perfused with TUDCA and/or TLCA were determined in the presence or absence of MAPK inhibitors. In addition, phosphorylation of Erk 1/2 and p38(MAPK) induced by TUDCA and/or TLCA was studied by Western immunoblot in IPRL and IRH. RESULTS: TUDCA-induced bile flow was impaired by the Erk 1/2 inhibitor PD98059 in normal livers (-28%), but not in livers made cholestatic by TLCA. GS-DNP secretion was unaffected by PD98059 under both conditions. TUDCA-induced bile formation and organic anion secretion both in the presence and absence of TLCA were unaffected by the p38(MAPK) inhibitor SB202190. Erk 1/2 phosphorylation in liver tissue was unchanged after bile salt exposure for 70 min, but was transiently enhanced by TUDCA in IRH. CONCLUSION: MAPK do not mediate the anticholestatic effects of TUDCA in TLCA-induced cholestasis.

6.
Nat Cell Biol ; 8(8): 894-6, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16829951

RESUMO

Gamma-secretase and signal peptide peptidase (SPP) are unusual GxGD aspartyl proteases, which mediate intramembrane proteolysis. In addition to SPP, a family of SPP-like proteins (SPPLs) of unknown function has been identified. We demonstrate that SPPL2b utilizes multiple intramembrane cleavages to liberate the intracellular domain of tumor necrosis factor alpha (TNFalpha) into the cytosol and the carboxy-terminal counterpart into the extracellular space. These findings suggest common principles for regulated intramembrane proteolysis by GxGD aspartyl proteases.


Assuntos
Ácido Aspártico Endopeptidases/metabolismo , Endopeptidases/metabolismo , Membranas Intracelulares/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Sequência de Aminoácidos , Secretases da Proteína Precursora do Amiloide , Ácido Aspártico Endopeptidases/genética , Sítios de Ligação/genética , Linhagem Celular , Citosol/química , Citosol/enzimologia , Citosol/metabolismo , Humanos , Dados de Sequência Molecular , Mutação/genética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Fator de Necrose Tumoral alfa/química , Fator de Necrose Tumoral alfa/genética , Proteínas de Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...